

GPG Smartcard Self-Help

Here comes a welcome message

Authors

Here is everyone who contributed to this document! :)
Add yourself!

ax3l [https://keybase.io/ax3l],
informancer [https://github.com/informancer],
Alexander (Nitrokey)
the participants of Datenspuren 2017,
…

INSTALLATION

	Debian 9 “stretch”

GPG2 BASICS

	List

	Change Home Directory

	Export

KEYGEN

	Create a Key

	Create Subkeys

	Renew a Key

SMARTCARD

	Personalize

	Import

	Change Device

BACKGROUND

	Algorithms

	Key Generation on Device

	Renewal

Debian 9 “stretch”

General

apt-get install gnupg2 gnupg-agent pcscd pcsc-tools scdaemon libusb-1.0-0 libccid
service udev restart

Yubikey

apt-get install libu2f-host0 yubikey-personalization yubikey-personalization-gui ykneomgr
service udev restart

Note

There are new GUI and CLI tools currently in beta for Yubikeys.
See Yubikey Manager [https://developers.yubico.com/yubikey-manager-qt/] and its CLI [https://developers.yubico.com/yubikey-manager/] (ykman).

Further initial setup needs explained in [YubiEdit]:

check USB devices
lsusb
Yubikey listed?

make sure CCID mode is enabled
note: -m86 is also possible, it enables all modes
ykpersonalize -m6

check basic information of your yubikey
ykinfo -a

check smart card readers
pcsc_scan
Yubikey listed?

connect to key's GPG app and output version
gpg-connect-agent --hex "scd apdu 00 f1 00 00" /bye
D[0000] 04 03 04 90 00
OK
-> means: v4.3.4

OpenPGP Version 1 or 2 card?
gpg2 --card-status | grep Version
Version: 2.1

Note

to do: yubi touch [https://github.com/a-dma/yubitouch] setup

Nitrokey

…

Further references

	https://wiki.fsfe.org/TechDocs/CardHowtos/CardWithSubkeysUsingBackups

	https://malcolmsparks.com/posts/yubikey-gpg.html

	https://github.com/drduh/YubiKey-Guide/find/master#install—linux [https://github.com/drduh/YubiKey-Guide/find/master#install---linux]

	https://developers.yubico.com/libu2f-host/

	http://wiki.yobi.be/wiki/GnuPG (includes trouble shooting)

	https://www.nitrokey.com/documentation/installation

	GUI: Gnu Privacy Assistant (GPA) [https://www.nitrokey.com/setup-gnu-privacy-assistant-gpa]

List

Owned Keys

Keys that you own (aka: you have access to the private keys)

gpg2 --list-secret-keys

Interpret Output

1sec rsa4096/0xCCCCCCCCCCCCCCCC 2015-02-01 [SCA] [expires: 2020-01-31]
2 FF
3uid [ultimate] Jane Roe <jane@roe.de>
4uid [ultimate] Dr. Jane Roe <j.roe@esa.int>
5ssb rsa4096/0xEEEEEEEEEEEEEEEE 2015-02-01 [E] [expires: 2020-01-31]

Line-By-Line

	line 1: the primary key

	line 2: fingerprint

	line 3-4: user IDs of the key (optional, used in Web-of-Trust and for Certification)

	line 5: the first subkey

Column-By-Column

1st column:

	sec: … (secret key available?)

	ssb: … (secret key of a subkey available?)

	ssb*: currently selected subkey during edits
(next section: selected via gpg2 --edit-key CCCCCC - key N)

	ssb>: only stub of a subkey is available
(next section: after secret part has been moved to a smartcard)

	sec#: the secret part is not available
(removed from local key store)

	uid: this line is a user ID

2nd column:

	algorithm/0xKeyID

3rd column:

	date of generation

4th column:

	[...]`: capabilities (see below)

5th column:

	date of expiration

Capabilities

Noted in each key with [...].
Can be delegated from the primary key to subkeys.

S: Sign.
Signs data, such as e-mails.

C: Certification.
Certifies (also: “signs”) keys, e.g. keys of other people at a crypto party or during subkey generation.
All primary keys must have this capability.

A: Authenticate.
Can be used for logins such as SSH.

E: Encrypt.
Encrypts (and decrypts?) data.

Note

to do: document each entry/line

Change Home Directory

By default, all gpg2 configuration data resides in $HOME/.gnupg/.

If you want to experiment with GPG, test a new smartcard or follow this document, you can also create a temporary new location to experiment with.
This prevents accidentially editing/deleting/modifying your already existing keys and to work from a live system or on an “offline” USB stick.

assuming the directory exists,
otherwise create it with
mkdir /media/my-usb-stick/my-gpg-home/
chmod -R og-rwx /media/my-usb-stick/my-gpg-home/
export GNUPGHOME=/media/my-usb-stick/my-gpg-home/

This setting is valid until you close your terminal.

The directory should only be accessible by the current user (see chmod comment above), otherwise you will see warnings of the form # gpg: WARNING: unsafe permissions on homedir '/media/my-usb-stick/my-gpg-home/'.

Note

On the first call to gpgp2 with a changed (fresh) home it will create a “keybox” (pubring.kbx) and a “trustdb” (trustdb.gpg).

gpg2 --list-secret-keys

gpg: keybox '/media/my-usb-stick/my-gpg-home/pubring.kbx' created
gpg: /media/my-usb-stick/my-gpg-home/trustdb.gpg: trustdb created

Export

How to backup your keys.

Public Key

gpg2 --export --armor CCCCCCCCCCCCCCCC > pubkey.ascii

Full Key

(including private part, probably what you are looking for)

gpg2 --export-secret-key --armor CCCCCCCCCCCCCCCC > fullkey.ascii

Note

An exported private key, e.g. stored on a USB stick is unprotected if you loose they storage media.
You can encrypt and decrypt the backup file with a simple password via:

encrypt with password
gpg -c fullkey.ascii
generates an encrypted fullkey.ascii.gpg file
rm fullkey.ascii

descrypt with password
gpg -d fullkey.ascii.gpg > fullkey.ascii
generates a decrypted fullkey.ascii file

Stubs

(for keys moved to smartcards)

Create a Key

… on your local laptop.

gpg2 --gen-key
here we select
RSA
size: 2048 or 4096

Warning

For Yubikeys, only generation 4 and newer support RSA key sizes of 4096!

Note

One can also generate keys directly on the smartcard.
Doing so has a list of pro’s and con’s that we need to inform you about first (to do).

Now, list your new keys.

Revocation Key

Note

A revocation key is not sensitive for encrypted data.
Still, anyone who can access your revocation keys can publicly and provably mark your keys as invalid.
For most use cases, just keep is as safe as your privaye key backups.

Create Subkeys

… on your local laptop.

Note

Reminder from gpg2 --list-secret-keys:

sec rsa4096/0xCCCCCCCCCCCCCCCC 2015-02-01 [SCA] [expires: 2020-01-31]
...

gpg2 --expert --edit-key CCCCCCCCCCCCCCCC

gpgp> addkey
select 8 add a new RSA sub-key to your key
select A, then S, then E to get a pure authentication key. Then Q to continue.
select same expiry as for the rest of the key and then answer y to save changes.

gpg> quit

Renew a Key

Local

gpg2 -- ...

From USB Backup

Smartcard

Personalize

You can personalize some of the meta information of your smartcard directly via the gpg2 interface.
This allows you to, e.g. set passwords or additional meta information.

start the edit of the smartcard
gpg2 --card-edit

gpg/card> admin
Admin commands are allowed

gpg/card> passwd
...

setting a URL for a public key dramatically easens the startup
needs when connecting the smartcard to an other device
(laptop, Android Cell Phone with OpenKeyChain) since the pub
key is not installed on the device
gpg/card> url
URL to retrieve public key: https://keybase.io/user/key.asc
note: some older versions of GPG only support http:// :(

the options below are purely administrational if you have several
smartcards or want to use them in specific workflows.
the information are not authenticated in any way and optional
gpg/card> name
Cardholder's surname: Doe
Cardholder's given name: Jane

gpg/card> lang
Language preferences: en

gpg/card> sex
Sex ((M)ale, (F)emale or space): f

gpg/card> login
Login data (account name): jane

gpg/card> quit

References

	[YubiEdit]

	https://www.gnupg.org/howtos/card-howto/en/ch03s03.html

Import

Full key to stub key…

Warning

Importing a GPG key to a smart-card is a one-way operation for your private key!
Backup your full key via an export first!

Note

Reminder from gpg2 --list-secret-keys after we created a sub-keys.

sec rsa4096/0xCCCCCCCCCCCCCCCC 2015-02-01 [SC] [expires: 2020-01-31]
uid [...]
ssb rsa4096/0xEEEEEEEEEEEEEEEE 2015-02-01 [E] [expires: 2020-01-31]
ssb rsa4096/0xAAAAAAAAAAAAAAAA 2015-02-01 [A] [expires: 2020-01-31]

gpg2 --edit-key CCCCCCCCCCCCCCCC

move primary key to signature key slot on card
gpg> toggle
gpg> keytocard
select: (1) Signature key

repeat for encryption key
gpg> key 1
gpg> keytocard
select: (2) Encryption sub-key

repeat for authentication sub-key
gpg> key 2
gpg> keytocard
select: (3) Authentication key

gpg> quit
Save changes? (y/N) y

gpg2 --list-secret-keys
[...]
ssb* [...]

See [YubiImport] and [YubiEdit]

	YubiImport

	https://developers.yubico.com/PGP/Importing_keys.html

	YubiEdit

	https://developers.yubico.com/PGP/Card_edit.html

Change Device

If you are moving with your configured smartcard to another device, its GPG keyring needs to learn the key before the card can be used.
The fastest way to achieve this is to retreive the public key as configured in the smartcard.

gpg2 --edit-card

receive key stubs from URL
gpg> fetch
gpg> quit

gpg2 --list-keys
now visible
gpg2 --list-secret-keys
[...]
ssb* [...]

Algorithms

ECC ws RSA and hardware support.

Key Generation on Device

Pros

	key never leaves the device

	very easy setup, e.g. integrated in Enigmail

Cons

	backup possible on generation if at all?

	entropy and RNG on device need to be trustworthy (often issues)

	recent Infineon RSA key issues can also weaken such generated keys
[1] [https://www.yubico.com/2017/10/infineon-rsa-key-generation-issue/],
[2] [https://www.yubico.com/support/security-advisories/ysa-2017-01/]

How

start the edit of the smartcard
gpg2 --card-edit

generate

Notes

The GPG manual [https://www.gnupg.org/howtos/card-howto/en/ch03s03.html] on --card-edit lists the possibility to store a off-device backup on generate.
Unclear: Is this possible with all devices?

Renewal

There are several ways to “renew” the lifetime of existing keys.
This chapter informs about several common ones and their pros/cons (to do).

Keep Key, Extend Deadline

	pro: easy update & publication

	pro: no new signatures needed

	con: adds no forward secrecy

Keep Primary Key, Update Subkeys

	pro: no new signatures needed

	neutral: update process a bit more complex

	unclear: adds (no) forward secrecy?

Generate New Primary Key, Sign with old Primary

	pro: forward secrecy from this point onward

	neutral: update process a bit more complex

	con: only transitive trust from old key

Index

 nav.xhtml

 Table of Contents

 		
 GPG Smartcard Self-Help

 		
 Debian 9 “stretch”

 		
 General

 		
 Yubikey

 		
 Nitrokey

 		
 Further references

 		
 List

 		
 Owned Keys

 		
 Interpret Output

 		
 Line-By-Line

 		
 Column-By-Column

 		
 Capabilities

 		
 Change Home Directory

 		
 Export

 		
 Public Key

 		
 Full Key

 		
 Stubs

 		
 Create a Key

 		
 Revocation Key

 		
 Create Subkeys

 		
 Renew a Key

 		
 Local

 		
 From USB Backup

 		
 Smartcard

 		
 Personalize

 		
 References

 		
 Import

 		
 Change Device

 		
 Algorithms

 		
 Key Generation on Device

 		
 Pros

 		
 Cons

 		
 How

 		
 Notes

 		
 Renewal

 		
 Keep Key, Extend Deadline

 		
 Keep Primary Key, Update Subkeys

 		
 Generate New Primary Key, Sign with old Primary

_static/file.png

_static/minus.png

_static/plus.png

